Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 714027, 2021.
Article in English | MEDLINE | ID: covidwho-1581346

ABSTRACT

In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.


Subject(s)
Cystic Fibrosis , Flagellin/metabolism , Pseudomonas Infections/complications , Respiratory Mucosa/virology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Bacterial Proteins/metabolism , COVID-19/complications , Cells, Cultured , Humans , Pseudomonas aeruginosa , Respiratory Mucosa/metabolism
2.
J Clin Med ; 9(11)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-918222

ABSTRACT

Viral infections are known to lead to serious respiratory complications in cystic fibrosis (CF) patients. Hypothesizing that CF patients were a population at high risk for severe respiratory complications from SARS-CoV-2 infection, we conducted a national study to describe the clinical expression of COVID-19 in French CF patients. This prospective observational study involves all 47 French CF centers caring for approximately 7500 CF patients. Between March 1st and June 30th 2020, 31 patients were diagnosed with COVID-19: 19 had positive SARS-CoV-2 RT-PCR in nasopharyngeal swabs; 1 had negative RT-PCR but typical COVID-19 signs on a CT scan; and 11 had positive SARS-CoV-2 serology. Fifteen were males, median (range) age was 31 (9-60) years, and 12 patients were living with a lung transplant. The majority of the patients had CF-related diabetes (n = 19, 61.3%), and a mild lung disease (n = 19, 65%, with percent-predicted forced expiratory volume in 1 s (ppFEV1) > 70). Three (10%) patients remained asymptomatic. For the 28 (90%) patients who displayed symptoms, most common symptoms at admission were fever (n = 22, 78.6%), fatigue (n = 14, 50%), and increased cough (n = 14, 50%). Nineteen were hospitalized (including 11 out of the 12 post-lung transplant patients), seven required oxygen therapy, and four (3 post-lung transplant patients) were admitted to an Intensive Care Unit (ICU). Ten developed complications (including acute respiratory distress syndrome in two post-lung transplant patients), but all recovered and were discharged home without noticeable short-term sequelae. Overall, French CF patients were rarely diagnosed with COVID-19. Further research should establish whether they were not infected or remained asymptomatic upon infection. In diagnosed cases, the short-term evolution was favorable with rare acute respiratory distress syndrome and no death. Post-lung transplant patients had more severe outcomes and should be monitored more closely.

3.
Front Immunol ; 11: 1229, 2020.
Article in English | MEDLINE | ID: covidwho-612918

ABSTRACT

COVID-19 is caused by the Severe Acute Respiratory Syndrome (SARS) coronavirus (Cov)-2, an enveloped virus with a positive-polarity, single-stranded RNA genome. The initial outbreak of the pandemic began in December 2019, and it is affecting the human health of the global community. In common with previous pandemics (Influenza H1N1 and SARS-CoV) and the epidemics of Middle east respiratory syndrome (MERS)-CoV, CoVs target bronchial and alveolar epithelial cells. Virus protein ligands (e.g., haemagglutinin or trimeric spike glycoprotein for Influenza and CoV, respectively) interact with cellular receptors, such as (depending on the virus) either sialic acids, Dipeptidyl peptidase 4 (DPP4), or angiotensin-converting enzyme 2 (ACE2). Host proteases, e.g., cathepsins, furin, or members of the type II transmembrane serine proteases (TTSP) family, such as Transmembrane protease serine 2 (TMPRSS2), are involved in virus entry by proteolytically activating virus ligands. Also involved are Toll Like Receptor (TLR) family members, which upregulate anti-viral and pro-inflammatory mediators [interleukin (IL)-6 and IL-8 and type I and type III Interferons among others], through the activation of Nuclear Factor (NF)-kB. When these events (virus cellular entry and innate immune responses) are uncontrolled, a deleterious systemic response is sometimes encountered in infected patients, leading to the well-described "cytokine storm" and an ensuing multiple organ failure promoted by a downregulation of dendritic cell, macrophage, and T-cell function. We aim to describe how the lung and systemic host innate immune responses affect survival either positively, through downregulating initial viral load, or negatively, by triggering uncontrolled inflammation. An emphasis will be put on host cellular signaling pathways and proteases involved with a view on tackling these therapeutically.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Immunity, Innate , Lung/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Signal Transduction , Animals , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/metabolism , Drug Delivery Systems , Epithelial Cells/virology , Humans , Lung/virology , Mice , Myeloid Cells/virology , Pandemics , Pneumonia, Viral/metabolism , Receptors, Cell Surface/metabolism , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Proteases/metabolism , Virus Internalization , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL